Les équations de la fission nucléaire et le nombre complexe vitesse de la lumière
- 23 janv. 2021
- Par jean françois thomas
- Blog : Le blog de jean françois thomas
J’utilise pi ( 3,14159265358 ), le nombre d'or ( 1,618033989 ) et e ( 2,717281828 ).
les logarithmes sont des logarithmes népériens sauf indication contraire.
j'utilise x pour une multiplication / pour une division.
la réaction de fission ( source Wikipédia ) : 3 équations de valeurs moyennes ( théorisées par Léo Szilard )
U238 + neutron = U239
U 235 + neutron = produit de fission + 2.47 (a) neutrons + 193,2 (b) MeV
Pu 239 + neutron = produit de fission + 2,91 (c) neutrons + 198,6 (d)MeV
239 / 238 = 1,004201681 (e)
2,91 (c) - 2,47 (a) = 0,44 (l)
198,6 (b) - 193,2 (d) = 5,4 (m)
5,4 (m) / 0,44 (l) = 12,27272727
12,2727227 x 1,004201681 (e) = 12,32439336
logarithme décimal de ( 3,14159265358 exposant 2 ) = 0,994299745 (f)
( e exposant 1 ) / 10 = 0,2718281828
0,994299745 (f) exposant 0,2718281828 = 0,998447284 (g)
10 exposant ( 12,32439336 / 10 ) = 17,0780915
17,0780915 x 0,998447284 (g) = 17,05157407
17,05157407 x ( logarithme de 3,14159265358 ) = 19,51944644
( 3 exposant 0,5 ) x 3,14159265358 / 10 = 0,544139809
0,998447284 (g) exposant 0,544139809 = 0,999154806
( e exposant 19,51944644 ) x 0,999154806 = 299792428,7
pour une vitesse réelle de la lumière admise de 299792458 m / s
1 / ( ( logarithme de 3,14159265358 ) exposant 3 ) x 10 = 6,666393362 (h)
6,666393362 / 1,004201381 (e) = 6,638502484
6,638502484 x 0,44 (l) x 5,4 (m) = 15,7730819
e exposant 15,7730819 = 7082106,148
1 / ( 2 exposant 0,5 ) = 0,707106781
0,994299745 (f) exposant 0,707106781 = 0,995965938
7082106,148 / 0,995965938 = 7110791,522
pour une vitesse de la lumière imaginaire trouvée de 7110718,049 (i)
nombre complexe exprimant la vitesse de la lumière ( billet du 30 décembre 2020 )
299792458 + 7110718,049 i m / s
6,666393362 (h) x ( 3,14159265358 exposant 4 ) = 649,3673179
649,3673179 x 7110718,049 (i) = 4617467908
( logarithme de logarithme de 3,14159265358 ) x ( logarithme de 3,1519265358 ) x ( 3,14159265358 exposant 4 ) = 15,07226961
1 / 15,07226961 = 0,066347009
0,994299745 (f) exposant 0,066347009 = 0,999620795
(4617467908 / 19 (j) ) exposant 0,999620795 = 241251712,2
( logarithme de logarithme de 1,618033989 ) x (3,14159265358 exposant 2 ) x 15,07226961 = -108,8082162
0,994299745 (f) exposant 3,14159265358 = 0,98220119
- 108,8082162 / 0,98220119 = - 110,7799678
241251712,2 - - 110,7799678 = 241251823 (k)
C 24 ème lettre de l’alphabet rang inversé
O 12 ème lettre de l’alphabet rang inversé
V 5 ème lettre de l’alphabet rang inversé
I 18 ème lettre de l’alphabet rang inversé
D 23 ème lettre de l’alphabet rang inversé 2
soit le codage COVID-19 : 241251823 (k) - 19 (j)
Le Club est l'espace de libre expression des abonnés de Mediapart. Ses contenus n'engagent pas la rédaction.