COVID-19 : 50 références scientifiques à l’appui de l’hydroxychloroquine

"Il n’y a pas le début du commencement d'une preuve de l'efficacité de l'hydroxychloroquine", voilà le mantra des autorités sanitaires françaises. Le professeur de microbiologie, Paolo Zanotto, de l’Université de Sao Paulo, publie une liste de 50 références scientifiques soutenant l’utilisation de l’hydroxychloroquine à la date du 16 Mai 2020. Cela donnera à lire aux personnes de bonne foi.

Compilation of 50 references (preprint or publication) to support HCQ by Pr Paolo Zanotto (University of Sao Paulo) on May 16, 2020

  1. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 2003; 3: 722–27.
  2. Joshi SR, Butala N, Patwardhan MR, Daver NG, Kelkar D. Low cost anti- retroviral options: chloroquine based ARV regimen combined with hydroxyurea and lamivudine: a new economical triple therapy.J Assoc Phys India 2004; 52: 597–98. 
  3. Lori F, Foli A, Groff A, et al. Optimal suppression of HIV replication by low- dose hydroxyurea through the combination of antiviral and cytostatic (‘virostatic’) mechanisms. AIDS 2005; 19: 1173–81. 
  4. Paton NI, Aboulhab J. Hydroxychloroquine, hydroxyurea and didanosine as initial therapy for HIV-infected patients with low viral load: safety, efficacy and resistance profile after 144 weeks. HIV Med 2005; 6: 13–20. 
  5. Luchters SMF, Veldhuijzen NJ, Nsanzabera D, et al. A phase I/II randomised placebo controlled study to evaluate chloroquine administration to reduce HIV-1 RNA in breast milk in an HIV-1 infected breastfeeding population: the CHARGE Study. XV International Conference on AIDS; Bangkok, Thailand; July 11–16, 2004. Abstract TuPeB4499. 
  6. Savarino A, Lucia MB, Rastrelli E, et al. Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr 1996; 35: 223–32.
  7. Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004; 323: 264–68.
  8. Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2: 69.
  9. Miller DK, Lenard J. Antihistaminics, local anesthetics, and other amines as antiviral agents. Proc Natl Acad Sci USA 1981; 78: 3605–09.
  10. Shibata M, Aoki H, Tsurumi T, et al. Mechanism of uncoating of influenza B virus in MDCK cells: action of chloroquine. J Gen Virol 1983; 64: 1149–56.
  11. Donatelli I, Campitelli L, Di Trani L, et al. Characterization of H5N2 influenza viruses from Italian poultry. J Gen Virol 2001; 82: 623–30.
  12. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997; 267: 727–48.
  13. Kwiek JJ, Haystead TA, Rudolph J. Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. Biochemistry 2004; 43: 4538–47.
  14. National Center for Biotechnology Information. MMDB—Entrez’s Structure Database. http://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml (accessed Dec 14, 2005).
  15. Olofsson S, Kumlin U, Dimock K, Arnberg N. Avian influenza and sialic acid receptors: more than meets the eye? Lancet Infect Dis 2005; 5: 184–88.
  16. Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. The Lancet Infectious Diseases Vol. 6 February 2006.
  17. Browning D.J. Pharmacology of Chloroquine 2 and Hydroxychloroquine. Chapter 2 in D.J. Browning, Hydroxychloroquine and Chloroquine Retinopathy, 35 https://doi.org/10.1007/978-1-4939-0597-3_2 © Springer Science+Business Media New York 2014.
  18. Yao et al., 2020. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Downloaded from https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciaa237/5801998by guest on 20 March 2020.
  19. Colson et al. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents. https://doi.org/10.1016/j.ijantimicag.2020.105932 0924-8579/© 2020 Published by Elsevier
  20. Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271 (2020).
  21. Gao, J., Tian, Z. & Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14, 72–73 (2020).
  22. Gordon et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing bioRxiv preprint doi: https://doi.org/10.1101/2020.03.22.002386
  23. Min Seo Kim, Soon-Woo Jang, Yu-Kyung Park, Bong-ok Kim, Tae-Ho Hwang, Seok Ho Kang, Won Jun Kim, Hea-Woon Park, Wonjong Yang, Joonyoung Jang, Min Ho An, 2020. Treatment Response to Hydroxychloroquine, Lopinavir/Ritonavir, and Antibiotics for Moderate COVID 19: A First Report on the Pharmacological Outcomes from South Korea. medRxiv preprint doi: https://doi.org/10.1101/2020.05.13.20094193
  24. Chen et al., Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20040758
  25. Elisabeth Mahase. Covid-19: what treatments are being investigated? BMJ 2020;368:m1252 doi: https://doi.org/10.1136/bmj.m1252 (Published 26 March 2020).
  26. Chloroquine and hydroxychloroquine: Current evidence for their effectiveness in treating COVID-19
  27. Sahraei, Z., Shabani, M., Shokouhi, S. and Saffaei, A., 2020. Aminoquinolines Against Coronavirus Disease 2019 (COVID-19): Chloroquine or Hydroxychloroquine. International Journal of Antimicrobial Agents, p.105945.
  28. Chauhan, A. and Tikoo, A., 2015. The enigma of the clandestine association between chloroquine and HIV‐1 infection. HIV medicine, 16(10), pp.585-590.
  29. Keyaerts, E., Li, S., Vijgen, L., Rysman, E., Verbeeck, J., Van Ranst, M. and Maes, P., 2009. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial agents and chemotherapy, 53(8), pp.3416-3421.
  30. Vincent, M.J., Bergeron, E., Benjannet, S., Erickson, B.R., Rollin, P.E., Ksiazek, T.G., Seidah, N.G. and Nichol, S.T., 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal, 2(1), p.69.
  31. Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W. and Wang, M., 2020. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1), pp.1-4.
  32. Savarino, A., Boelaert, J.R., Cassone, A., Majori, G. and Cauda, R., 2003. Effects of chloroquine on viral infections: an old drug against today’s diseases. The Lancet infectious diseases, 3(11), pp.722-727.
  33. Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Liu, X., Zhao, L., Dong, E., Song, C. and Zhan, S., 2020. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Disease.
  34. Gautret, P., Lagier, J.C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V.E., Dupont, H.T. and Honoré, S., 2020. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, p.105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
  35. Christian A. Devaux, Jean-Marc Rolain, Philippe Colson, Didier Raoult. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?, International Journal of Antimicrobial Agents (2020), https://doi.org/10.1016/j.ijantimicag.2020.105938.
  36. Singh AK, Singh A, Shaikh A, Singh R, Misra A, Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries, Diabetes & Metabolic Syndrome: Clinical Research & Reviews (2020), doi: https://doi.org/10.1016/j.dsx.2020.03.011.
  37. Kaapor KM & Kaapor A. Role of Chloroquine and Hydroxychloroquine in the Treatment of COVID-19 Infection- A Systematic Literature Review. medRxiv preprint doi: https://doi.org/10.1101/2020.03.24.20042366.
  38. Gao J , Tian Z , and Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020. https://doi.org/10.5582/bst.2020.01047.
  39. Liu W & Li H. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. https://doi.org/10.26434/chemrxiv.11938173
  40. Cortegiani et al., A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19, Journal of Critical Care, https://doi.org/10.1016/j.jcrc.2020.03.005.
  41. James M. Sanders, PhD, PharmD; Marguerite L. Monogue, PharmD; Tomasz Z. Jodlowski, PharmD; James B. Cutrell, MD. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19) A Review JAMA. https://doi.org/10.1001/jama.2020.6019 Published online April 13, 2020.
  42. Riou B, Barriot P, Rimailho, A., Baud FJ. Treatment of Severe Cholroquine Poisoning. The New England Journal of Medicine, Vol. 318, Number 1, January 7, 1988. pp. 1-6.
  43. Huang et al. Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. medRxiv preprint doi: https://doi.org/10.1101/2020.04.26.20081059.
  44. Membrillo et al. Early hydroxychloroquine is associated with an increase of survival in COVID-19 patients: an observational study. https://www.preprints.org/manuscript/202005.0057/v2.
  45. Davido et al. on behalf of the COVID-19 RPC Team Hydroxychloroquine plus azithromycin: a potential interest in reducing in- hospital morbidity due to COVID-19 pneumonia (HI-ZY-COVID)? medRxiv preprint doi: https://doi.org/10.1101/2020.05.05.20088757.
  46. Czuppon et al. Predicted success of prophylactic antiviral therapy to block or delay SARS-CoV-2 infection depends on the targeted mechanism. medRxiv preprint doi: https://doi.org/10.1101/2020.05.07.20092965.
  47. Million, et al., Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Medicine and Infectious Disease, https://doi.org/10.1016/j.tmaid.2020.101738.
  48. Carlucci et al. Hydroxychloroquine and azithromycin plus zinc vs hydroxychloroquine and azithromycin alone: outcomes in hospitalized COVID-19 patients. medRxiv preprint doi: https://doi.org/10.1101/2020.05.02.20080036.
  49. Tang et al. Hydroxychloroquine in patients mainly with mild to moderate COVID–19: an open–label, randomized, controlled trial. medRxiv preprint doi: https://doi.org/10.1101/2020.04.10.20060558.
  50. Yu et al. Hydroxychloroquine application is associated with a decreased mortality in critically ill patients with COVID-19. medRxiv preprint doi: https://doi.org/10.1101/2020.04.27.20073379.

 

 

Le Club est l'espace de libre expression des abonnés de Mediapart. Ses contenus n'engagent pas la rédaction.

L'auteur a choisi de fermer cet article aux commentaires.